
BIOINFORMATICS Vol. 00 no. 00 2014
Pages 1–6

Optimal Selection of Enzyme Triad for Index Alignment of
Contigs to Optical Maps Using MapReduce
Darshan Washimkar 1∗
1Department of Computer Science, Colorado State University, Fort Collins, CO, USA.

ABSTRACT
Motivation: Optical mapping creates a restriction enzyme map that
has been used for scaffolding contigs and assembly validation for
large genomes. There is a lot of research going on to increase the
efficiency of contig alignment to the optical map. One of the problems
encountered during the process of contig alignment to an optical
map is a missing or wrong restriction sites. Frequently it happens,
that a specific combination of restriction enzymes could not digest
a recognition sequence, and hence the process of contig alignment
has to deal with a missing or wrong restriction sites. There is a subtle
balance between a good digestion process and the enzymes used for
digestion. Different combinations of restriction enzymes can be tested
in the laboratory to get best digestion, but that is very expensive and
laborious.
Project Goal: The goal of this project is to bypass the expensive
process of laboratory testing to figure out the best restriction enzyme
triad for alignment of contigs to optical map. Another important part of
project is to write a script that will find all combinations of enzyme
triads. Enzymes selected to create the combinations must have
cutting frequency specified by the user. Our software take a list of
the enzymes combinations and contigs as the input parameters and
output the best restriction enzyme triad for particular genome.

1 INTRODUCTION
Field of biophysics has seen many advances from the time when
Frederick Sanger determined the sequence of insulin. One of the
major milestone in the field of biophysics was a use of computer to
study and compare multiple sequences. In 1970, Paulien Hogeweg
and Ben Hesper coined the term ’Bioinformatics’ to refer to the
study of information processes in biotic systems. In 45 years
from the advent of Bioinformatics field, we have seen numerous
techniques that can assemble genome very efficiently in linear
time. Even though next generation assembly techniques are really
efficient in time complexity, there is always a trade off between
running time and quality of the assembly for genome assembler
techniques. If genome contains many repetitive regions, then most
of the assembly techniques are unable to assemble good quality
genome.

One of the reasons for erroneous assembly is a use of only short
read information for assembling a genome. In case of the genome
with repetitive region, it becomes very hard to find unique position
for a sequence of nucleotides. One of the ways to overcome the

∗Correspondence: darshanw@cs.colostate.edu

Fig. 1. Optical Mapping System [8]

misassembly problem in a genome with repetitive regions is a use
of longer read information such as optical maps.

1.1 Restriction enzyme
A restriction enzyme is an enzyme that cuts DNA at or near
specific recognition nucleotide sequences known as restriction sites.
There are over 417 restriction enzymes that have been studied in
detail. In most optical mapping experiments, a combination of three
restriction enzymes out of applicable 417 enzymes is used to digest
the DNA molecule.

1.2 Optical Mapping
Process of optical mapping gives genome-wide, high resolution
and ordered restriction map for single DNA molecule. The
restriction map obtained from optical mapping is called optical map.
Optical maps have a locations of restriction sites along the DNA.
Information about the restriction sites collectively gives unique
fingerprint for that particular sequence. A new technology used in
creating an optical map can detect approximately as long as 30kb
or as small as 800bp of fragment sizes. This parameter is very
important to select value of bucket size from our algorithm. Optical
maps can be use to scaffold and validate genomes.

Figure 1 shows a process of creating an optical map. In the first
step of creating an optical map DNA is extracted from a cell and
placed onto a special surface which contain microfluidic channels.
This surface is called as optical mapping surface. In the next
step, restriction enzymes are added onto optical mapping surface

1

Darshan Washimkar

Fig. 2. In silico digestion

which create number of fragment of digested DNA molecule. Each
fragment size is recorded by taking high resolution images and
applying some machine learning algorithms on that images. With
the help of map assembler, fragment sizes are used to generate
genome-wide optical map.

1.3 In silico digestion
In silico digestion is a computational process to convert to convert
contigs from sequence domain to the optical mapping domain. In
in silico digestion process each restriction enzyme would cleave the
short segment of DNA defined by the contig. Thus, in silico digested
contigs are miniature optical maps.

Figure 2 shows the process of in silico digestion. For an enzyme
AcII, which has a restriction sequence as AA’CGTT, linear search
is carried out on contig sequence to find locations of restriction site.
Restriction site locations are useful in constructing a fragment sizes.
Figure shows that, after digesting a contig with AcII restriction
enzyme, we get three fragments, each of size 15, 17 an 12.
Information of fragment size is important for the method used this
project.

1.4 Suffix Tree
Given a string S of length m, a suffix tree T encodes all suffixes
of S, i.e. S[i,m] for 1 ≤ i ≤ m The construction of such a tree
for a string S takes time and space linear in the length of S. [16]
Once constructed, several operations can be performed quickly, for
instance, locating a substring in S, locating a substring if a certain
number of mistakes are allowed etc.

For this project, we have used generalize suffix tree. Generalize
suffix tree is also a suffix tree, but created with a set of strings. If
the set of strings is represented by T = S1, S2, S3, ..., Sn having
total length L then generalize suffix tree is a Patricia tree containing
all L suffixes of the strings [13]. Generalize suffix tree can be
constructed using Ukkonen’s algorithm with O(n) time complexity
[14]. Generalize suffix tree help in find all z occurrences of a string
P of length m in time complexity of O(m+ z) [13].

Figure 3 shows the generalize suffix tree built using two strings
S1= abab and S2= aab. Suffixes that belong to S1 are represented
by ’$’ symbol while suffixes of S2 are represented by a special
character ’#’. If you have n different strings, then you will need
n different special characters to represent suffixes of each string
distinctly. Special characters should not be a part any of the strings
represented in the suffix tree.

Fig. 3. Generalize suffix tree example with S1= abab and S2= aab [15]

2 RELATED WORK
De novo assembly can produce large contigs from a short sequence
reads, but this process still produces a substantial number of errors
[1, 2]. There are methods that use optical mapping information
to improve the quality of assembly like SOMA [4], AGORA [3],
and TWIN [5]. SOMA is an abbreviation for Scaffolding using
Optical Map Alignment. SOMA is a scaffolding technique which
employ a dynamic programming approach with time complexity
of O(n2m2). SOMA align in silico digested contigs to optical
maps. On the similar line, TWIN aligns in silico digested contigs
to optical map using FM-index and suffix array. TWIN is an index-
based method that can align even larger genomes within seasonable
running time. On the other hand, AGORA uses optical mapping
information to build de Bruijn graph. This graph then used to
assemble the genome.

There are some other methods like Gentig9, Valouev et al. 10
and BACop 11 that uses optical mapping information. Hence it
becomes very important to get optical maps that can align uniquely
to contig sequence. The optical mapping process heavily relies on
a good digestion of DNA molecule by restriction enzymes. Since
a large number of restriction enzymes are available [6], the choice
of the most effective enzyme to digest a DNA molecule become
difficult. Mathematical models like the one incorporated in REDI
[7], can help to predict the chances of a particular enzyme to be
useful for given DNA sequence. Experiments show that the use of
multiple restriction enzymes give more accurate optical map, but
the programs like REDI, which are based on individual enzyme
probability could not help in such scenario.

3 METHOD
There are two main challenges in finding the best triad combination
of enzyme that will generate a unique fingerprint for each contigs.
The first challenge is to find all common fragment lengths from
the fragments sizes obtained after in silico digestion in linear time.
We used generalized suffix tree to address this problem. Second
hurdle is an overall time taken to find common fragment lengths
for all possible combinations of enzyme triad. We tried to solve this
problem by implementing our algorithm in MapReduce framework
and distribute tasks over multiple CPUs.

Our method of finding common fragment lengths need two input
parameters. First is a name of three enzymes (triad) for which we

2

short Title

Fig. 4. Flow diagram of an algorithm to find number of common fragment
lengths for given contigs and restriction enzyme triad

need to find a count of common fragment lengths. The second is
the assembled contigs. We divided our method into three steps as
follows. Figure 4 shows a flow diagram of an algorithm that counts
numbers of common fragment lengths.

3.1 Converting Sequence Domain Information into
Optical Domain Information

Contigs obtained from the assembler are the strings of nucleotides.
Size of contigs may vary depending on the assembler use, size
and quality reads. The contig information is in sequence domain
format. To convert it to optical domain, we can use in silico
digestion process explained in the above section. Let’s consider,
we have enzyme triad as E1, E2, E3 and contigs sequence as
C1, C2,C3,...,Cn. In silico digestion process takes linear time to
search restriction sites for given enzymes E1, E2, E3 and on each
contig C1, C2,C3,...,Cn. Restriction sites can give us a size of each
fragment created due to restriction sites. We don’t consider first and
last fragments for further calculation because they are most probably
the artifacts of assembly process. Also, on the similar line if some
contig produce fragments less than or equal to two then we don’t
consider those fragments.

3.2 Quantization Of Fragment Lengths
Optical maps are not precise enough. They can have an error margin
of 100 to 200 base pairs. So to accommodate this error margin, we
need to quantize the values of fragment sizes. In this project, we
are using simple quantization technique with bucket size k. Value
of k can vary depending on the expected error in optical mapping
experiment. However, we are using a bucket size of 300 that
means we have an error window of 150 base pairs. Each quantize
value of fragment size is then converted to a character representing
that bucket. All the quantized fragment sizes of contig Cn gives
one string S1. For each contig present in the input file, string of
quantized fragment sizes is created. Let’s call this strings as S1, S2,
S3,...,Sn.

3.3 Build And Traverse Generalize Suffix Tree
To find all common sub-strings of strings S2, S3,...,Sn in linear
time, we use generalize suffix tree. Ukkonen’s algorithm proposed
in 1995, can generate generalize suffix tree in O(n) time. Once the
generalize suffix tree is built, it is a trivial task to find common
substrings of S1, S2, S3,...,Sn. Consider if, Si = abmnob and Sj

= abcde. We can say that, ’ab’ is a common sub-string and character
’b’ is repeated thrice. Hence we will return number of shared sub-
string value as ’5’.

Once the sub-string values of all possible triad combinations is
calculated, the combination that gives the lowest value of sub-string
can be called as the best enzyme combination that will produce a
unique fingerprint for given contigs sequence. Thereby gives best
digestion and good optical maps which can be uniquely aligned to
contigs using TWIN or SOMA to eliminate assembly errors. Below
is a pseudo code for the algorithm described in this section.

For each
(
n
3

)
combinations of enzymes

{
For each contig C present in contig file

(.fasta)
{

in silico digestion
Find fragment lengths
Quantize fragment lengths
Convert quantized lengths to

corresponding characters and create
string Si

}
Build suffix tree(S1, S2, S3,...,Sn)
Count shared sub-string in suffix tree
E = save(Enzyme combination, Count)

}

min_count = Find minimum count in E.
return(enzyme combination corresponding to

min_count)

4 IMPLEMENTATION
The algorithm described in the previous section is implemented
in MapReduce framework. We used Hadoop implementation of
MapReduce. Map reduce helps to process the quantity of data
in distributed environment. In Hadoop, instead of data being
transferred to the computations, computations are transferred to
the data. This approach is followed because bringing computations
close to data is much easier on the network than transferring data
over the network. In MapReduce, there are mappers, combiner and
reducers which are managed by the master node.

Master Node: Master node manages the metadata of the cluster.
Master node keeps track of the distribution and replications of the
data in HDFS. All workers nodes send their status periodically to the
master via heartbeats. These heartbeats contain information such as
health of the chunk stored at that node, any discrepancies present

3

Darshan Washimkar

Fig. 5. System architecture - An implements of algorithm given in section 3 using Hadoop

in the data, stale data chunks and their information. If master nodes
find out about the failure of any of the nodes in the cluster, the data
stored at the failed node is replicated at another randomly chosen
node. Once the failed node comes up, the temporary node which
contains the data from the failed node is notified to delete the data.

Mapper: Mapper is the primary task executors or workers to whom,
data is directly fed from the DFS. Mappers process the chunk of data
assigned to them and produce intermediate key-value pairs. These
intermediate key-value pairs are then stored in the main memory
of the mapper until all data which has been assigned to mapper is
processed completely.

Reducer: The Reducer is the second component of the MapReduce
process. Reducer receives the intermediate key-value pairs from the
mapper. Final processing is done on intermediate key-value pairs
and the output is produced. Each reducer is associated with multiple
mappers. The output of the reducer is stored in HDFS.

Combiner: At large scale, reducers are associated with large number
of mappers. Due to this association, network traffic increases
significantly. Chances of occurrences of a bottleneck at the reducer
are very high due to such scalability issues. To solve these problems,
combiners were introduced in MapReduce. Combiner process the
intermediate key-value pairs received from mappers. Combiners are
run on each mapper node. This intermediate component helps to
reduce the amount of data that will be transferred over the network
to the reducers.

Most of the Bioinformatics libraries are written in python. To
take an advantage of these libraries, we have designed MapReduce
implementation in python. Hadoop setup provides a Hadoop-
streaming-2.3.0.jar which is used as an interface for mappers and
reducers written in languages other than Java. In python, coding for
the mapper and reducer relaxes the developer from worries such as
types of the input key-values and output key-values. Also, standard
input and standard output objects assist in accessing the HDFS and

make changes to HDFS. We have used BioPython libraries to create
the enzyme objects which allow us to use Bio.Python.Restriction
class. Bio.Python.Restriction class contain many methods and
variables that return properties of the restriction enzyme. Details
of our MapReduce implementation are as given below:

4.1 Creating All Possible Combinations Of Enzyme
Triads

We found out that there are 417 enzymes present in Biopython
package having cutting frequency greater than or equal to 4096.
To perform in silico digestion, we are using enzymes in the
combination of three. To create distinct combinations of such triads,
we wrote a python script which reads the enzymes file and gives
a simple text file which contains all possible distinct combinations
of triads of enzymes. We received around 12 million combinations
of triads of enzymes, which were without any repetitions. This
file is then distributed in the MapReduce cluster. When this file
is distributed in HDFS, to assure the availability of the data, data
is replicated three times. Also, it should be noted that, each node
in the cluster is responsible for a certain amount of the total data
distributed in HDFS.

We required to provide contigs file to our program program locally.
Major reason for providing the contigs file through local system is
the uniformity in processing data in HDFS. If both of these files
were to be stored in the HDFS, it would have been a tedious task
to identify the type of data that has been read into the mapper and
multiple map reduces would have to be employed in order to get
the streamline results. To avoid such cumbersome tasks, we have
provided conigs file through the local file system. This approach
will also help in testing all Contigs for a small sub set of enzyme
triads that have been assigned to the mapper.

4.2 Mapper Implementation
The input to the mapper is received from the HDFS through the
standard input object. Enzyme triads are received as input to the

4

short Title

mapper. Each line read from the HDFS represents the triads of
enzymes. We split them in three parts to get the three enzymes’
strings. We have used the Bio.Restriction API to initialize the
enzyme object. We passed the string which contains the name of the
enzyme along with the Bio.Restriction API to the getattr method.
This method returns the object of the enzyme. These objects will
be used in performing in silico digestion on the contigs read from
the fasta file. Once all enzyme are initialized, fasta file is open
for reading. Each line in the fasta file represents a contig. To get
the contig object from the line read from the fasta file, we have
used Bio.SeqIO.parse() API. This API returns the a contig object.
In silico digestion works at the time complexity of O(n), since
each enzyme works on catalysis process on contig sequence. The
output which is received from the catalysis of the contig sequence
with first enzyme is then passed as an input to the catalysis process
performed by the second enzyme. Same goes for the third enzyme.
Output received from the catalysis performed by the third enzyme
is then passed to the quantize method. Quantize method returns
the quantized value. All these quantized values are stored in the
fragment size array. This fragment size array is converted to unicode
strings variable. (UTF-8 encoded) This variable is later used to
construct the generalized suffix tree. On this generalized suffix tree,
we performed a postorder traversal to find out the total number of
shared suffixes. The total number of shared suffixes is then passed
as a value along with the triad of enzyme that was read from the
HDFS as the key to reducer.

4.3 Reducer Implementation
Reducer reads the intermediate key-value pairs of the data produced
by the mapper. Initially, the intermediate data is stored in the main
memory of the node where mapper was being executed. Later, these
key-value pairs are stored in the HDFS. We created an object list,
which will store these key-value pairs. Once we have all pairs, which
contain a combination of the triads of enzymes and the number of
shared suffixes for the respective triad of enzyme; we have sorted
them in ascending order. As per the requirement, we output top n
enzyme triads and their number of shared suffixes.

5 EXPERIMENT AND RESULTS
We chose an Escherichia coli genome to test our software. We got
E.Coli genome assembled using velvet assembler. It had 180 contigs
with varying length from 200-50,000bp. We calculated all possible
combinations for 417 enzymes, which comes up to be 11998480
combinations. But soon we realize that biopython library doesn’t
have classes for all 417 enzymes. So we sorted the enzymes for
which classes don’t exist in biopython library. We have used Dell
Zhang’s generalize suffix tree implementation that has a support
for unicode (UTF-8 encoded). As this code support addition of
only 36 strings to the generalize suffix tree, we had to change
this implementation to support n addition number of strings to
generalize suffix tree.

Figure 6 gives the results of our experiment. We calculated first
10 combination of enzyme triads. First column containing enzymes
DrdI, AccB7I, Sse232I gives 5932 sub-strings which is a minimum
value and hence combination of DrdI, AccB7I, Sse232I will produce
an optical map that can be uniquely align to contigs.

Fig. 6. Top 10 results

6 CONCLUSIONS
We have successfully implemented a tool to find the best possible
combination of restriction enzyme to get a good optical map using
MapReduce framework. Our software has been tested against the
real data sets such as ecoli data set. We have shown that, it is possible
to find a combination of enzymes that will output best optical map.
As a part of this project, we distributed complex Bioinformatics
computations over distributed environment. We also successfully
adopted existing python library to build a suffix tree as per our need.
It is an achievement because it was very complex. As a part of this
project we wrote python scripts for mapper and reducers, which was
a learning experience for us. We found the coding for mappers and
reducers in python, is way easier than it is in Java.

There is a vast horizon for improvement and scope of this project.
As future scope for testing the scalability of our software, we
can use even larger and complex dataset like eukaryote genomes,
Budgerigar genome, and human genome. while experimenting with
different combination of enzymes triads, we found out that suffix
tree implementation is slightly buggy. As a future scope, better
implementation of suffix tree will help improving scalability and
performance of existing project.

REFERENCES
[1]Ronen, R., Boucher, C., Chitsaz, H., Pevzner, P.: SEQuel: Improving the Accuracy

of Genome Assemblies. Bioinformatics 28(12), 188?196(2012)
[2]Alkan, C., Sajjadian, S., Eichler, E.E.: Limitations of next-generation genome

sequence assembly. Nat. Methods 8(1), 61?65 (2010)
[3]Lin, H.C., et al.: AGORA: Assembly guided by optical restriction alignment. BMC

Bioinformatics 12, 189 (2012)
[4]Nagarajan, N., Read, T.D., Pop, M.: Scaffolding and validation of bacterial genome

assemblies using optical restriction maps. Bioinformatics 24(10), 1229?1235 (2008)
[5]Martin D. Muggli, Simon J. Puglisi, Christina Boucher: Efficient Indexed Alignment

of Contigs to Optical Maps, Algorithms in Bioinformatics, WABI (2014)
[6]Roberts RJ: Restriction enzymes and their isoschizomers, NuclAcidr Res, 17 (1989)

r347-r415.
[7]Todd w. Sands, Michael l. Petras and Janny Van Wijngaarden, A computer program

to assist in the choice of restriction endonucleases for use in DNA analyses, Int J
Biomedcomput, 25 (1990) 39-52

[8]Medicago truncatula re-assembly using Optical Map, http://jcvi.org/
medicago/archives_assembly.php, 17-12-2014.

5

Darshan Washimkar

[9]Anantharaman, T., Mishra, B.: A probabilistic analysis of false positives in optical
map alignment and validation. In: Proc. of WABI, pp. 2740 (2001)

[10]Valouev, A., et al.: Alignment of optical maps. J. Comp. Biol. 13(2), 442462 (2006)
[11]Zhou, S., et al.: A single molecule scaffold for the maize genome. PLoS Genet.

5(11), 1000711 (2009). doi:10.1371/journal.pgen.1000711
[16]Suffix tree, Wikipedia, http://en.wikipedia.org/wiki/Suffix\
_tree, 17-12-2014.

[13]Generalized suffix tree, Wikipedia, http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/Generalized_suffix_tree,

17-12-2014.
[14]Ukkonen, E. (1995). ”On-line construction of suffix trees”. Algorithmica 14 (3):

249260. doi:10.1007/BF01206331
[15]Ron Shamir and Roded Sharan, Suffix Trees, http://www.cs.tau.ac.il/
˜rshamir/algmb/presentations/Suffix-Trees.pdf, 17-12-2014.

[16]Dell Zhang, A suffix tree implementation with Unicode support
http://researchonsearch.blogspot.com/2010/05/suffix-
tree-implementation-with-unicode.html, 17-12-2014.

6

